6n^2-15=6(5)^2-15

Simple and best practice solution for 6n^2-15=6(5)^2-15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6n^2-15=6(5)^2-15 equation:



6n^2-15=6(5)^2-15
We move all terms to the left:
6n^2-15-(6(5)^2-15)=0
We add all the numbers together, and all the variables
6n^2-4225=0
a = 6; b = 0; c = -4225;
Δ = b2-4ac
Δ = 02-4·6·(-4225)
Δ = 101400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{101400}=\sqrt{16900*6}=\sqrt{16900}*\sqrt{6}=130\sqrt{6}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-130\sqrt{6}}{2*6}=\frac{0-130\sqrt{6}}{12} =-\frac{130\sqrt{6}}{12} =-\frac{65\sqrt{6}}{6} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+130\sqrt{6}}{2*6}=\frac{0+130\sqrt{6}}{12} =\frac{130\sqrt{6}}{12} =\frac{65\sqrt{6}}{6} $

See similar equations:

| -1+9g=8g-10 | | a) | | –1+9g=8g-10 | | –1+9g=8g−10 | | 8=-3c-29 | | 3-4n=-7-4n | | 3(2x-1)+(5+8x)=18 | | 3k2=12 | | √x+5+7=10 | | 1.4(x=5)+1.6x=52 | | -9-8x=71 | | r2+4=0 | | 2r+4=0 | | 15-2n=-7n | | y=-0.3-3.7 | | 5y-3÷3y+7=3 | | 81=1/2h(2+7) | | -0.48x+0.18=6.6 | | v=18+6^4 | | F(x)=2x²+5x-9 | | (9x-33)=5x+3 | | n-10=(5n/6)-7-(n/3) | | 5=7c-11 | | 9.92=2.48(j+2) | | 3q+10=31 | | n-10=5n/6-7-n/3 | | 14y=44 | | (x^2-3)^2-5(x^2-3)+6=0 | | 4x/8=60 | | (8x-77)=3x+38 | | 4y=-2+16 | | 3x^2-9=201 |

Equations solver categories